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Abstract. The aim of this work is to study the porosity of three-dimensional and two-dimensional packing
of stiff cylindrical fibres according to their aspect ratio. First, we have carried out an experimental study
of the porosity for 3D and 2D packing. In this last case, the elementary representative surfaces have been
determined. Then, an attempt of interpretation of the porosity variations for 2D stacks has been realized
on the basis of the excluded volume theory and a variation law has been proposed. To conclude, we have
studied the relevance of a simplified packing model based on a single geometry of the defects.

PACS. 45.70.-n Granular systems – 46.65.+g Random phenomena and media – 61.43.Gt Powders, porous
materials

1 Introduction

Porous media present many different characteristics of
structure (shape of the skeleton and of the pores of the
solid matrix). There is also a great diversity in the ma-
terial which compose them. We find them in our natu-
ral environment (beds of sand, of gravel, wood, foams,
chalky soil, ...) as well as in manufactured goods (build-
ing materials, paper, insulators, catalysts, ...). Moreover
a large number of industrial products such as glass wool,
filters, reticulate ceramics, new composite materials are
composed of fibres.

The present study concerns the characterisation of
stacks of rigid fibres. Because of the complexity of these
systems, the experimental approach is a good tool to study
their structural characteristics (porosity, permeability, ar-
rangement, etc.).

Many works concerning ordered and random stacks of
spheres having one or several radii have been carried out
since the thirties and literature is full of results in this
field. Yet, the first experimental results concerning the
packing of fibres appeared in the seventies.

Milewski [1–3] studied mixtures of fibres and glass
beads to reduce the amount of resin used in making re-
inforced plastics. He made measurements on stacks of
wooden fibres having a diameter of 2.1 mm and an as-
pect ratio r = L/d (fraction length over the diameter of
the fibre) between 4 and 72. He determined a law of varia-
tion for the density of the stack as a function of the aspect
ratio of the fibre. He obtained the same law of variation
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for fibreglass having a diameter equal to 13 µm and has
extended his study to the combinations of fibres with dif-
ferent aspect ratios.

Nardin [4] studied stacks of particles of different na-
tures (glass, steel, PMMA ...) and of various shapes
(spheres, discs, fibres, revolution ellipsoids). He distin-
guished two major types of stacks:

- loose, obtained by settling in a viscous fluid;
- close, obtained by compression of the stack (with small

vibrations).

Rahli [5,6] studied loose and close packing of Nylon
or metal (copper, bronze) fibres. He, moreover, proposed
a model based on the excluded volume determined by
Onsager [7]. With this model, the variations of porosity
can be described according to the aspect ratio.

Parkhouse and Kelly [8] studied the packing of
spaghetti having a diameter of 1.8 mm and an aspect ra-
tio between 6 and 140. Thanks to a semi-empirical model,
these authors proposed an analytic expression of the law
of porosity as a function of the aspect ratio. They also de-
fined an upper limit to the solid volume fraction for each
aspect ratio.

The major results acquired on the packing of rigid fi-
bres are the following:

- the existence of a single variation curve of the porosity
according to the aspect ratio for loose packing, whatever
the nature or the size of the fibres;

- the existence of two models of variation of the porosity.

All these works concern three-dimensional stacks of
rigid fibres.
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The subject of the present work is the study of the
loose packing of cylindrical fibres made of plastic, hav-
ing a diameter equal to 5 mm and an aspect ratio
between 1.2 and 50.5, for three-dimensional and two-
dimensional stacks, with particular attention to the 2D
structures. In this last case, the width of the packing cell
is equal to the diameter of a fibre. These two-dimensional
structures present many advantages in experiments as well
as in theory. In this configuration, it is possible to study
the structure of the stack. In this work, the variation laws
of the porosity according to the aspect ratio are deter-
mined experimentally for 2D and 3D stacks. For 2D stacks,
a variation law of the porosity is proposed.

2 Materials and methods

2.1 Fibres and packing cells

The fibres used are cylinders in white delrin (plastic) hav-
ing a diameter of 5 mm. Their aspect ratios are contained
between 1.2 and 50.5.

For 2D stacks, 3 different-sized glass cells, adapted to
the lengths of the fibres, are used. The dimensions of the
cells (Width W and Height H) and the aspect ratios of
the fibres which can be studied are the following:

cell
1 2 3

W 18.6 38 100
(cm)
H 50 50 100

(cm)
r 1.2 3.0 12.1

1.5 5.0 20.2
3.0 7.1 30.3

10.1 50.5
12.1

To obtain stacks in 2D cells, two methods are possible.
The first consists in using a funnel in the shape of a tri-
angular prism whose rectangular outlet is equal to the
aperture of the cell. In this case, fibres are simply poured
into the funnel and then drop into the cell. The packing
is made without any compression, so the stacks obtained
are loose. The second method consists in introducing the
fibres individually by hand, with a position and an orien-
tation as random as possible. The second method has not
been used in this study because it is too time-consuming
for the small aspect ratios. Two examples of 2D stacks are
presented in Figure 1 (Photos 1 and 2).

2.2 Analysis tools

2.2.1 Determining the porosity of 2D and 3D stacks
by weighing

The method of measuring the porosity εp by weighing is
very simple but it enables only the mean porosity of all
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Fig. 1. Photo 1: Part of a stack of fibres having an aspect ratio
r = 1.5. Photo 2: Part of a stack of fibres having an aspect ratio
r = 7.1.

the stack to be ascertained. In particular, it integrates
the possible local variation of porosity due to the effects
of the sides of the cell. Once the density ρ of the delrin
and the total volume Vtot occupied by a mass m of fibres
(equivalent to a volume of fibres Vf) are known, the mean
porosity εp of the stack is:

εp = 1− Vf

Vtot
= 1− m

ρ

1
Vtot
· (1)

The uncertainty of the measurement of the mean stack
height leads to an error ∆Vtot over the total volume Vtot.
So, at first approximation, the error on porosity is:

∆εp ≈
Vf ∆Vtot

V 2
tot

· (2)

The 2D porosities have been obtained by averaging the
values found for 3 different stacks for each aspect ratio.
The deviations from the mean value are smaller than 0.5%.

2.2.2 Determining the porosity and the local
properties of 2D stacks by image processing

Image processing enables the local porosity of the system
on a defined surface to be studied and then the problems
due to the boundaries of the stack to be minimised. The
experimental set-up used is shown in Figure 2. The im-
ages are processed and the two-dimensional porosity of
the stack is given by the fraction number of black pixels
over the total number of pixels of the complete image. To
obtain a porosity in a volume, it is necessary to apply a
conversion factor to the result because fibres are cylinders
and not parallelepipeds.

We have assessed the porosities of the stacks in central
rectangular windows of increasing sizes. As can be seen in
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packing by pouring into a funnel

image processing
software

camera

Fig. 2. Experimental set-up used to study 2D packing by im-
age processing.
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Fig. 3. Porosity for 2D packing versus the area of the obser-
vation window - r = 1.5.

Figures 3 and 4, the curves which represent the variations
of the porosity according to the size of the window have
two distinct parts:

- a first part where the porosity varies noticeably;
- a second part where the porosity fluctuates around a

mean value; the range of these fluctuations decreases
when the area of the observation window increases.

So, we define the Elementary Representative Surface
(ERS) as the smallest area for which the porosity becomes
almost constant. In practice, the ERS is taken as the area
after which the maximum deviation between two extreme
values of porosity is less than one percent of the average
of these values. Then, the mean porosity found by image
analysis is defined as the average of the measured porosi-
ties for areas larger than the ERS.

Thus, the ERS determined for aspect ratios equal to
1.5 - 3 (cell 1) - 5.0 - 7.1 and 10.1 (cell 2) are given in
Table 1. In Figure 5, we have drawn the variations of the
dimensionless ERS (ERSd), defined as the fraction ERS
over the apparent area of a fibre Sf (Sf = L × d), versus
the aspect ratio. The ERS is noticeably proportional to
r. Therefore the ERSd is almost constant. For the studied
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Fig. 4. Porosity for 2D packing versus the area of the obser-
vation window - r = 5.0.

Table 1. ERS and ERSd versus the aspect ratio.

aspect ERS ERSd

ratio (cm2)

1.5 120 318

3.0 180 241

5.0 380 308

7.1 490 283

10.1 710 287

0 2 4 6 8 1 0
aspect ratio

ERSd 

1 2

500

400

300

200

100

0

Fig. 5. Dimensionless elementary representative surface
(ERSd) versus the aspect ratio.

range of aspect ratio, the ERS is equal to 300× Sf .

ERSd =
ERS
Sf
≈ 300. (3)

2.2.3 Comparison of the two methods

We have compared the two measuring methods through
the values of porosity obtained by image processing and
by weighing (Tab. 2). It can be seen that there is a good
agreement. This seems to show that the cells used are large
enough for the boundaries not to have a noticeable effect
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Table 2. Total areas of the stacks, ERS and porosities.

aspect packing porosity by ERS porosity by
ratio area (cm2) weighing (%) (cm2) imag. proc. (%)
1.5 800 27.3 120 27.05
3.0 810 28.6 180 27.6
5.0 1730 31.5 380 30.3
7.1 1720 34.0 490 33.6

10.1 1700 37.2 710 37.0
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Fig. 6. Measured porosity of 2D stacks versus the aspect ratio.

Table 3. Experimental values of 2D porosities, cells used and
number of fibres in the stacks.

aspect porosity porosity cell nb of
ratio weighing (%) imag. proc. (%) fibres
1.2 26.5 1 2000
1.5 27.3 27.05 1 2010
3.0 28.6 27.6 1–2 1000
5.0 31.5 30.3 2 1230
7.1 34.0 33.6 2 830

10.1 37.2 37.0 2 550
12.1 39.9 2–3 430
20.2 44.1 3 540
30.3 47.2 3 510
50.5 49.4 3 480

on the porosity determined by weighing. In these exper-
iments, the total areas of packing are at least 2.4 times
larger than the ERS.

3 Experimental results

The values of the 2D porosities found by weighing and
by image processing are represented in Figure 6. They are
given in Table 3 with the numbers of fibres which compose
the stacks. All these experimental points correspond to a
single curve. 2D porosity is an increasing function of the
aspect ratio.

For an aspect ratio equal to 1.2, the porosity of the
stack is equal to 26.5%. This stack can be considered as
dense. Indeed, for comparison, the lowest porosity for a

Table 4. Experimental values of 2D and 3D porosities, number
of fibres in the stacks.

aspect porosity nb of porosity cell nb of
ratio 3D (%) fibres 2D (%) fibres
1.2 30.9 2000 26.5 1 2000
1.5 31.5 2010 27.3 1 2010
3.0 33.5 1010 28.6 1 1000
5.0 41.7 1030 31.5 2 1230
7.1 49.3 660 34.0 2 830

10.1 56.2 390 37.2 2 550
12.1 63.3 280 39.9 2 430
20.2 44.1 3 540
30.3 47.2 3 510
50.5 49.4 3 480
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Material d (mm)AuthorDim

Present study3D Plastic 4.95

Nardin [4]3D PMMA 3
Steel 1
Glass 0.01

Milewski [3]3D Wood 2.1
Glass 0.013

Parkhouse [7]3D Spaghetti 1.8

Rahli [5]3D Nylon 0.15
Metal 0.15

Present study2D Plastic 4.95

Fig. 7. Measured porosities for 2D and 3D stacks versus the
aspect ratio.

compact packing of cylinders in 2D would be 21.5%. For
high aspect ratios (r close to 50), the porosity is almost
50%.

In the absence of a similar system to compare the vari-
ation law of the porosity found, we have established a
parallel between 2D and 3D packing of fibres (Tab. 4).
In Figure 7 the laws of variations are shown for the two
types of stacks. We have also mentioned the results of the
porosity measurements of 3D stacks found by Milewski [3],
Nardin [4], Rahli [5,6] and Parkhouse [8] and we have spec-
ified the nature and the characteristics of the fibres used.

It can be noted that for 3D stacks, our experimental
plots are very close to the single curve found by the other
authors.

The porosity variation laws for 2D and 3D structures
are similar. Two behaviours can be observed:

- a noticeably linear variation with a high increase for
aspect ratios lower than around 16;

- a zone where the increase is limited with an asymptotic
trend for high values of r.

It can be seen that the porosity of 2D packing is lower
than 3D packing. The deviation between the two curves
increases with the aspect ratio.
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Table 5. Dimensionless excluded volume V f
excl and number n

of fibres in V f
excl as a function of r for 2D and 3D packing.

3D packing 2D packing
aspect porosity V f

excl n porosity V f
excl n

ratio (%) (%)
1.2 30.9 9.7 6.7 26.5 5.8 4.3
1.5 31.5 10.1 6.9 27.3 5.9 4.3
3.0 33.5 12.6 8.4 28.6 6.9 4.9
5.0 41.7 16.4 9.6 31.5 8.4 5.8
7.1 49.3 20.3 10.3 34.0 10.0 6.6

10.1 56.2 26.3 11.5 37.2 12.4 7.8
12.1 63.3 30.4 11.1 39.9 14.1 8.4
20.2 77 46.5 10.7 44.1 20.6 11.5
30.3 47.2 28.7 15.2
33.3 85 72.6 10.9
50.0 90 106.0 10.6
50.5 49.4 45.1 22.8

4 Analysis and interpretation

There exists no theoretical porosity prediction model of a
packing of fibres. For 3D stacks, two semi-empirical mod-
els have been proposed by Parkhouse and Kelly and by
Rahli.

The model of Parkhouse and Kelly [8], based on a sta-
tistical approach to the distribution of the pores in the
stacks, leads to the following porosity law:

ε ≈ 1− 2 ln (r)/r. (4)

Because of the assumptions made in this model, it is lim-
ited to 3D packing and cannot be applied to 2D stacks.

Rahli [5,6] proposed a porosity variation law based
on the excluded volume model elaborated by Onsager [7].
This volume is defined as the mean portion of the space
which one fibre excludes to the centre of the surrounding
fibres. By dividing this volume by the volume of a fibre, the
dimensionless excluded volume obtained can be written as
following:

V f
excl =

π

2r
+ 6 + 2r. (5)

Rahli proposed the following porosity law:

ε = 1− n

V f
excl

= 1− n
π

2r
+ 6 + 2r

(6)

where n is the equivalent number of fibres contained in the
excluded volume. For 3D stacks, Rahli [5,6] found that n
is noticeably constant and almost equal to 11 for aspect
ratios higher than 7 (Tab. 5 and Fig. 8).

The comparison between these two models and the
experimental results shows a good qualitative agreement
(Fig. 9). Rahli’s model gives correct results for aspect ra-
tios higher than 7.

On the basis of these results, we have tried to apply the
model of the excluded volume to 2D packing. The detail of
the calculation for a fibre having an aspect ratio r is given

aspect ratio

n
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Fig. 8. Number n of fibres in the excluded volume for 2D and
3D packing.
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Fig. 9. Ranges of validity of the two existing models of varia-
tions of the porosity for 3D packing.

in the appendix. Thus, the excluded volume obtained for
2D stacks divided by the volume of a fibre can be written
as follows:

V f
excl =

8
π

+
16
π2

+
8
π2

(
r +

1
r

)
. (7)

The values calculated from this expression are given in
Table 5.

Then, the porosity is:

ε = 1− n

V f
excl

= 1− n
[

8
π

+
16
π2

+
8
π2

(
r +

1
r

)]−1

(8)

where n represents the equivalent number of fibres con-
tained in the excluded volume. It would appear worth-
while to study the behaviour of n for 2D packing. Thus,
from the experimental data of porosity we calculate the
different values of n (Tab. 5 and Fig. 8).
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Fig. 10. Comparison of the experimental porosities and of the
porosities calculated with the excluded volume model for 2D
packing.

For the studied aspect ratio range, contrary to 3D
packing, the parameter n is noticeably proportional to the
aspect ratio.

Using the law found for n, the porosity variation ac-
cording to the aspect ratio can be written as follows:

ε = 1− n

V f
excl

= 1− [0.376r + 3.861]
[

8
π

+
16
π2

+
8
π2

(
r +

1
r

)]−1

.

(9)

In Figure 10, a good agreement can be noted between the
measured values of the porosity and the values calculated
with this equation. For values of r lower than 3, a small
deviation appears.

From this equation, we notice a limit of the porosity
equal to 53.6% when the aspect ratio of the fibres tends to
infinity. According to our experimental results, this limit
seems reasonable. If this limit works really for high aspect
ratio, it would differ significantly from the limit obtained
for 3D packing which is equal to 100%.

However, it is not possible to be sure from experimen-
tal data at finite aspect ratio that this difference is main-
tained in the asymptotic limit of large ratio.

The mechanisms of fibre packing in 3D as well as in
2D cannot be understood from the different models which
have been proposed. In Figures 1 (Photos 1 and 2), we
observe the existence of dense areas induced by compact
stacks and of loose zones due to faulty packing. The com-
pact area is composed of a succession of fibres ordered in
the form of bundles while the loose zone is characterised
by faulty packing of one or several fibres. Porosity depends
on two parameters: the size and the number of the pores.
An observation of the stacks does not show up a charac-
teristic pore for a given aspect ratio.

To estimate the influence of the size of the pores on
the porosity according to the aspect ratio, a model de-
fect formed by 4 fibres (Fig. 11) was first considered.
The elementary cell defined in this way occupies a vol-
ume equal to (L+ d)2 × d. The porosity produced by this

Fig. 11. Square elementary cell.
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Fig. 12. Comparison of the porosities calculated in a square
elementary cell and of our experimental porosities.

structure is:

ε = 1− π r

(r + 1)2
· (10)

In Figure 12, the values of porosity calculated with this
expression are compared to our experimental porosities.
The curves present an almost similar behaviour. However,
the calculated porosities have a sharper increase. In this
model, the shapes of the elementary cells and of the pores
have been imposed and the number of fibres in a cell has
been fixed at 4.

To attempt to generalise this approach, the system is
now divided into elementary cells whose shape is not de-
fined precisely and whose volume is K×(L+d)2×d (where
K depends on the geometry of the system). Each of these
cells contains a number n of fibres which includes among
others the fibres ordered in bundles around the defect. The
porosity evaluated in these elementary cells is:

ε = 1− π n
K

r

(r + 1)2
· (11)

The experimental measure of the porosity for an aspect
ratio equal to 1.2 gives a value of n/K equal to 0.95.
Thus, the porosities calculated with this value are very
close to the ones presented in Figure 12 which corresponds
to an n/K equal to 1. Figure 13 shows that the values
of n/K determined from our experimental porosities in-
crease with the aspect ratio. So, it is essential to increase
n and/or to decrease K. Indeed, according to Figure 1, it
seems obvious that the geometry of the defects and thus
the parameter K depend significantly on the aspect ratio
of the fibres. So, it is very difficult to describe the sys-
tem with only one geometry of the pores without taking
into account the variation of the shape of the defects with
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Fig. 13. Ratio n/K versus the aspect ratio.

the aspect ratio. An approach including the shapes, the
sizes and the number of the pores is necessary to uncor-
relate the parameters K and n and then to predict the
experimental porosity better.

5 Conclusion

The Elementary Representative Surface (ERS) for 2D
stacks of fibres has been determined. We have shown that
the dimensionless ERS does not depend on the aspect
ratio.

We have established an experimental law of porosity as
a function of the aspect ratio of the fibres for 2D packing.

This variation law is similar to the one corresponding
to 3D packing. However, for the same aspect ratio, the 2D
stack is more compact.

The excluded volume model for 3D packing has been
extended to 2D stacks. We have determined the varia-
tion law of the porosity versus r. The results obtained
show that the behaviour of a 3D stack is different from
that of a 2D stack. This approach predicts an asymptotic
porosity limit equal to 53.6% unlike the 3D case where
this limit was equal to 100%. However, this prediction de-
pends on the linearity between n and aspect ratio which,
though valid in the experimental range, is not proven in
the asymptotic limit of large ratio.

On the basis of the simplified model developed, it
seems that the variations of porosity according to the as-
pect ratio depend on the variation of the size and the
shape of the defects.

Appendix: Calculation of the excluded
volume for 2D packing of fibres

The excluded volume has been defined in the previous
study as the mean volume which a fibre prevents the centre
of its surrounding neighbours from occupying. In 2D, it is
convenient to first calculate an excluded surface. Thus,
fibres can be considered as rectangles L long and d large.

1

Sα2

Sα3

Sα4

Sαexcl

k

i

α
Sα1

Sα5

Fig. 14. Representation of the excluded volume in 2D for 2
fibres making an angle α.

First of all, it is necessary to calculate the excluded surface
Sαexcl for two fibres making an angle α. In practice, to
calculate Sαexcl, we make one fibre slide along the other one
while maintaining their orientation as shown in Figure 14.

So, the excluded surface Sαexcl can be broken down as
following:

Sαexcl = 2(Sα1 + Sα2 + Sα3 + Sα4 ) + Sα5 .

Let k be the half of the diagonal of a rectangle, the cal-
culation of the different surfaces leads to the following
expressions:

Sα1 = L× k × sin(α+ i)

Sα2 = Sα4 =
Ld

4
Sα3 = d× k × cos(α− i)
Sα5 = L× d.

So, we obtain the following expression for the excluded
surface for 2 fibres making an angle α:

Sαexcl = 2Ld+ 2Lk sin(α+ i) + 2dk cos(α− i).
Then, it is possible to calculate the excluded surface by
averaging the previous expression over all the possible rel-
ative orientations α between the 2 fibres:

Sexcl =
1
π/2

∫ π/2

0

[2Ld+ 2Lk sin(α+ i)

+ 2dk cos(α− i)]dα
which can be written:

Sexcl = 2Ld+
4
π
k[sin(i) + cos(i)][L+ d].

Now, with the following relations:

k =

√(
L

2

)2

+
(
d

2

)2

, sin(i) =
d√

(L2 + d2)
=

d

2k
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and

cos(i) =
L√

(L2 + d2)
=

L

2k

we find:

Sexcl = 2Ld+
2
π

[L+ d]2.

To obtain the excluded volume Vexcl, we have to multiply
the previous expression by the diameter d of a fibre. Then,
by dividing the resulting relation by the volume of a fibre,
we obtain the dimensionless excluded volume:

V f
excl =

8
π

+
16
π2

+
8
π2

(
r +

1
r

)
.
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